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Abstract. SMSes are a great way to communicate via short text. But,
some people take advantage of this service by spamming innocent people.
Deep learning models need more SMS data to be adaptive and accurate.
But, SMS data being sensitive, should not leave the device premises.
Therefore, we have proposed a federated learning approach in our re-
search study. Initially, a distiiBERT model having validation accuracy of
98% is transported to mobile clients. Mobile clients train this local model
via the SMSes received and send their local model weights to server for
aggregation. The process is done iteratively making the model robust and
resistant to latest spam techniques. Model prediction analysis is done at
server side using global model to check which words in message influence
spam and ham. On-device training experiment is conducted on a client
and it is observed that the losses of the global model converge after every
iteration.

Keywords: Spam Detection - Federated Learning - Distil-BERT - SHAP
Analysis - Android .

1 Introduction

Short Message Service (SMS) is one of the popular modes of communication.
This service is provided by telecom operators and used by people and organiza-
tions. These organizations can be banks, governments, companies, startups, etc.
Sensitive details like authentication OTPs, bank balance, verification codes, and
booking details are shared via SMS which becomes a loophole in the system.
Spammers can exploit this vulnerability by spamming and trapping innocent
users using cheap tricks. Novice users blindly believe in the fake and lucrative
rewards and benefits given by spammers and fall into the trap.

According to [1], there are more than 6 billion smartphone users currently,
and will be 7 billion by 2025. This will allow spammers to bulk SMS spam on
multiple smartphones with the hope that significant people get fooled. Spammers
usually attract users by giving them fake rewards, lottery results, giveaways,
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and promises of some free and affordable services. They ask users for PINs and
passwords by gaining their trust. They also send hyperlinks that redirect them
to some phishing page or it downloads some malware or spyware on the phone.
In this way, they get unauthorized access to users’ sensitive data. Users ignore
these threats due to a lack of awareness and repent later. Thus, there is a clear
need for an intelligent automated deep learning-based spam classifier that alerts
mobile users about potential spam and ham messages.

Keeping in mind, the SMS data confidentiality, it will be more vulnerable if
SMS data is sent to a centralized server to get spam classification. Also, bom-
barding the server with requests for each SMS by billion users at a time is not
feasible as the server may crash. Deep learning models become robust if they
are trained on large data. Smart spammers have multiple tricks to spam users.
So, a system needs to be created that is adaptive to new spam techniques and
at the same time classifies SMS spam on-device, thus respecting the privacy of
users’ sensitive SMS data. Federated Learning i.e. on-device privacy-preserving
learning approach can solve all problems of SMS data privacy, server latency,
and model robustness and adaptability.

The objective of this research is to apply federated learning to classify SMS
spam messages. We have used a federated learning approach provided by the
Flower framework to classify SMS spam on-device. The distilBERT deep learning
model is used to classify whether the SMS is spam or ham. Initially, a global
model is sent to each mobile device from a centralized server. This global model
gets trained on the local mobile’s SMS data on-device so every device will have
different model weights. After these local models get trained, they will send their
model weights and not the SMS data to a centralized server periodically at a
certain interval. The centralized server will aggregate the weights received from
each local model and send the final aggregated global model to each device. This
happens iteratively and the model becomes more and more adaptive and robust
and users’ privacy is also not breached. Model prediction analysis is also done
on the server-side to determine keywords in spam SMSes.

The structure of the paper is as follows: Section 2 describes the literature
survey, where we discussed existing approaches. In Section 3, we have proposed
our methodology. In Section 4 we have explained our experiments. In Section 5,
we have presented our results. Finally, in section 6, we conclude our paper.

2 Literature Survey

Sandhya Mishra et al. [2] proposed a Smishing (SMS Phishing) detection system
and evaluated it on real time datasets and they also performed a case study
on Paytm smishing scam. Their proposed system consisted of Domain Checking
Phase and SMS Classification Phase. Only the SMS containing URLs are fed
into the domain checking phase where they verify the authenticity of the URL.
Features such as domain name and query parameters are extracted and searched
on Google. If the domain name is in top 5 results they marked them as legitimate
else they carried second-level domain checking. In second-level domain checking,
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source code of a website along with all URLS in that source code are also ex-
tracted. Domain names of all these URLS are compared and if they belong to
the same domain then they are marked legitimate else it is passed to SMS Clas-
sification phase. In the final phase misspelled words, leet words, symbols, special
characters, and smishing keywords are extracted. Leet words are the words in
which some characters of the genuine word are replaced by digits and symbols to
make it appear like a genuine word. Finally a neural network and classifications
algorithms such as Naive Bayes, Decision Tree and Random Forests were used
for the final prediction. Neural network gave the best performance among all
and gave a 97.93% accuracy score.

M.Rubin Julis et al. [3] followed the Natural Language Processing (NLP)
approaches for spam classification. They used the SMS Spam Corpus v.0.1 to
apply their proposed methodology. They applied stemming on their dataset to
change over the similar words to their base word format so that the number of
unique words does not become too large. Eg: works, working would be converted
to work. Spam SMS have the same looking words (homoglyphs) to trick the
user to believe that it is a legitimate message. They converted these words into
their genuine word format for better insights. Various classical machine learn-
ing algorithms such as Logistic Regression, Naive Bayes Classifier, K Nearest
Neighbours, Support Vector Machines and Decision Tree Classifier were used.
To compare the efficiency of models they also computed the prediction time.
Support Vector Machine got the best accuracy score (98%) among all the mod-
els. Naive Bayes was fastest in terms of prediction and since it gave nearly the
same results as the Support vector machine it was most effective.

Wael Hassan Gomaa et al. [4] proposed the impact of deep learning on SMS
Spam filtering. They used the dataset from the UCI repository with 5574 English
language emails containing 4827 non-spam and 747 spam emails. The dataset was
converted to semantic word vectors using the Glove model. They used 6 machine
learning classifiers and 8 deep learning techniques. The maximum accuracy they
got from machine learning classifiers was 96.86% given by Gradient Boosted
Trees. In deep learning, the maximum accuracy was given by RDML which is
99.26% accuracy.

X. Liu et al. [5] have compared various machine learning approaches for
SMS spam detection. Neural network-based approaches performed better com-
pared to classical machine learning algorithms. Further, the authors proposed
a seq2seq transformers multi-head attention model for spam classification and
it has outperformed other methods. To encode textual data, authors have used
Glove embeddings for neural networks and TF-IDF representation for machine
learning algorithms. SMS Spam Collection v1 and UtkMI’s Twitter datasets are
used for training and evaluation purposes.

Sergio Rojas—Galeano [6] aims to investigate the possible advantages of lan-
guage models that are sensitive to the context of words. First, they performed
a baseline analysis of a large database of spam messages using Google’s BERT.
Then, build a thesaurus of the vocabulary that contained these messages. The
author has performed a Mad-lib attack experiment where he modified each mes-
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sage with different rates of substitution. The classic models maintained a 93%
balanced accuracy (BA) while the BERT model scored a 96%. The performance
of the TFIDF and BoW encoders was also affected by the attacks. These results
indicate that BERT models could provide a better alternative to address these
types of attacks.

H. Brendan McMahan et al [11] introduced a distributed machine learning
technique that keeps the data for the model training on the edge device such
as mobile and develops a global model combined with the knowledge gained
from each client by training models at edge devices. This new methodology is
termed Federated Learning by the authors. The decentralized approach respects
the privacy of the user-sensitive data and sends only the model weights to a
centralized server through the network. They introduced the Federated Averaging
algorithm to combine the results of the local models gained after applying the
Stochastic Gradient Descent (SGD) algorithm to the local models of all the
clients. This algorithm executes on the server-side and performs model weights
averaging. Their algorithm reduces the communication costs for transferring
weights from clients to the centralized server by introducing more independent
clients and performing extra computation on devices. Mobiles handling these
computations is feasible since training dataset size is generally small, and mobile
processors are modern and advanced. Later they conducted two experiments, one
image classification task to identify the images that will be viewed frequently.
The second task was to develop language models for predicting the next word,
complete responses to messages. They achieved a test set accuracy of 99% for the
image classification task with the help of the CNN model on the MNIST dataset
with 1, 10, 20, 50, and 100 clients. In case of the language models, they used
the LSTM model on a dataset created from The Complete Works of William
Shakespeare with a total of 1146 clients and achieved a score of 54%. These
results show the performance of federated learning and how one can use it to
solve other data-sensitive problems with it.

Federated Learning has shown promising results in machine learning where
the private-sensitive data of the user comes into the picture. However, imple-
menting federated learning systems has many challenges due to scalability. Due
to these difficulties involved while developing federated systems, researchers have
to rely on simulation results. Daniel J. Beutel et al [15] introduced Flower, a fed-
erated learning open source framework that helps researchers test their federated
systems in the real world on edge devices such as mobile. Their framework sup-
ports many deep learning frameworks and supports model training on many
heterogeneous devices. The framework was capable to support a total of 15M
clients with the help of a couple of GPUs only.

Andrew Hard et al [13] used a federated learning mechanism to train a re-
current neural network to train a federated learning system to predict the next
word for a sentence from Google’s keyboard application, GBoard. The authors
of the paper chose federated learning because most of the datasets available
generally have a different distribution than chatting between users. Their model
was trained using Tensorflow Framework and used Tensorflow Lite for prediction
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on mobile devices. Client devices needed to have a vocabulary of 10000 words,
and after compression, a model of size 1.4 MB was placed in the mobile phones.
The GBoard application gave three suggestions for the next word, so they used
Top-3 recall and Top-1 recall as their evaluation metrics. Results of the federated
learning approach were better than the server approach for real chat data.

3 METHODOLOGY

3.1 Dataset

We have merged three datasets which amount to 39792 rows in our proposed
methodology. In total, we have 21768 ham messages and 18024 spam messages.
In each dataset, we have two columns i.e. message body and label whether the
message is spam or ham.

Enron Spam Dataset : Enron Spam dataset is a dataset created by [8]. There
are a total of 33716 records and 4 columns in the dataset. The fields in this email
dataset are the subject, message, spam/ham label, and date of the email. We
have used message and label fields for our research and also discarded 371 rows
as they were unlabelled. We have 33345 messages, out of which 16852 are spam
and 16493 are ham.

UCI SMS Spam Collection Data Set : UCI SMS Spam collection dataset is
a publicly available dataset made by [9] containing 5572 messages and 2 columuns.
The 2 columns are message and label. There are a total of 747 spam messages
and 4825 ham messages.

British English SMS Corpora : British English SMS Corpora is a publicly
available dataset made by [10] containing 875 messages with each message with
a label i.e. spam or ham. It contains 425 spam messages and 450 ham messages.

Data preprocessing like removing special characters and punctuations are
done on each dataset and then merged to create a final dataset.

3.2 DistilBERT

The DistilBERT [7] model is a distilled version of BERT. DistilBERT is a small,
fast, cheap, and light Transformer model trained by distilling BERT base. It
has 40% fewer parameters than bert-base-uncased and runs 60% faster while
preserving over 95% of BERT’s performances as measured on the GLUE lan-
guage understanding benchmark. This Model is specifically calibrated for edge
devices or under constrained computation conditions. Given this, DistilBERT is
a suitable candidate for federated SPAM detection.
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3.3 Federated Learning

In machine learning systems data is stored in a centralized format to train and
improve machine learning models. Also, the input data is sent from devices over
the network to compute inference. Sometimes the input data for the model is
sensitive to the user, and in such scenarios, we can use Federated Learning[11].
Federated Learning is a modern distributed machine learning technique that
utilizes sensitive data of the user present on mobile devices to train machine
learning models directly on mobile phones. Clients then send the model weights
and not the data over the network to a server. With the help of the FedAvg [11]
algorithm, a weighted average of all the model parameters from various clients
gets computed. Google has applied this technique in Google Assistant [12] and
Google keyboard (Gboard) [13]. We have used this same Federated Learning
technology to predict whether SMS received by the user is spam or ham.

Each part of our Federated Machine Learning system is described in following
subsections:

Initial Global Model Training For initial global model training, we have
fine-tuned the DistilBERT model for our task of SMS Spam detection. The
input message is processed using the DistilBERT tokenizer and converted into
input_ids and attention_masks. Then the classifier network as shown in Figure 1
after DistilBERT consists of 3 Dense Layers each having a Dropout with a rate
of 0.2. 90% of the combined data is used for training and rest 10% for validation.

Model Training and Inference on Edge Devices - For training the Deep
Learning model on an Edge device like android phones, our deep learning model
has to be exported in multiple parts.

Base - This is the fine-tuned DistilBERT model, which would not get trained
on the user’s device, it will be only used to extract bottleneck features, and these
features are used as an input to the head.

Head - This is the classifier part of the model, which comes after the base
model. The Head will get trained on the user’s device.

Scheduling of On Device Model Training The training model on mobile
devices is a resource-intensive task, and the computing power of mobiles is also
limited. We should not train a model when the device is operated to avoid a bad
user experience, has a low battery, or has no internet connection. Due to these
reasons, we need to train our model after the above constraints are followed, and
to accomplish it we have used the WorkManager API. We have used this API
to schedule training of models on recent SMS data available on the user’s device
once every 15 days.

Federated Cycle The server will wait for a specific number of clients to start
the federated learning iterations. Once the server has connections from the re-
quired number of clients, the local model training on clients initiates, and the
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Fig. 1. Deep Learning Model Architecture
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weights are sent securely to the server. Later a global model is created from an
aggregation of local model weights. This global model has knowledge of all the
clients and is sent back to all the clients. In this way, every client gets the knowl-
edge from all other clients without losing their privacy. We carry out analysis
of the global model to understand its performance. This analysis is explained in
detail in section 4.2.

3.4 System Flow

The FedSpam system flow is demonstrated in Figure 4. The steps mentioned in
the flow diagram are explained below:

1. Initially, the centralized server will send the global model to all local mobile
clients.

2. Mobile clients receive SMS messages from companies, operators, friends, etc.

3. All SMSes received during the sprint of the last 15 days stored in the mobile’s
local database are fetched and sent to the local model.

4. The local model will predict whether the messages are spam or ham and
assign a label and store it in a local database.

5. Now, the user is given the option to rectify the label if the local model
predicted wrong and writes the final label to the database. Then, the local
model will train on these SMS data.

6. The local model weights are sent to the server for aggregation.

Secure Aggregation of all local model weights to make a global model.

8. Model Prediction Analysis of the global model to check which keywords
influence messages towards spam or ham.

=

All these federated learning steps are scheduled periodically every 15 days to
make model robust and adaptive.
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4 Experiment

4.1 Experimental Setup

For training the initial global model, we used Google Colab with 12.69GB of
RAM, and 107GB of ROM, having TPU runtime. Packages used are tensorflow
2.8.0, transformers 4.17.0, and flwr[15] 0.18.0. For federated learning setup, mul-
tiple android devices are used, all having android SDK version > 28 and RAM
> 4GB.

4.2 Model Prediction Analysis

Machine Learning these days plays an important role for many businesses to-
day. Businesses not only require a machine learning model with great accuracy
but also require justification for the prediction. The importance of the model
prediction justification is equal to its accuracy. We have used SHapley Additive
exPlanations (SHAP)[14] for the global model to see which words or group of
words present in the SMS made our model predict either the spam or ham class.
In both figures 2 and 3, words that are marked with red color push the prediction
towards class 1 (spam), and those marked with blue push the prediction towards
class 0 (ham). From figure 2, it is clear that many words are blue, and their con-
tributions towards prediction are much heavier than the few words marked in
red. In the case of figure 3, many words are red, and their contributions are more
dominant than those marked as blue.

4.3 On Device Resources Analysis

We used Xiaomi’s Redmi Note 5 Pro (launched back in Feburary 2018) to un-
derstand the CPU and RAM consumption of our federated learning mobile app.
Since we are training machine learning models on mobile phones, it becomes very
important to analyze the CPU usage and RAM consumption to understand the
impact of the application on mobile devices. We have used Android Studio’s
CPU Profiler to monitor the CPU and RAM consumption. After experimenting,
we found that the CPU usage on average is around 12%, and in some cases, it can
rise to 25% because of data loading and model training operations. Similarly, we
found RAM consumption to be around 400 MB. With these requirements also,
the application was working smoothly and did not cause any performance is-
sues on the device. Due to the advancements in mobile processors, our proposed
application will become more and more efficient on modern mobile devices.

4.4 Evaluation Metrics

We have used Categorical Cross Entropy mentioned in eq. 1 as the loss function
for this classification problem

= yilog G (1)
1
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where n is the output size.
e*t
0(2) = —g—— fori=12,... K (2)
Zj:l €%
where K is the number of classes. The last layer activation function is the softmax
activation function mentioned in eq. 2. The optimizer we have used is Adam.

5 Results

Initial Global Model - We fine-tuned the DistilBERT on the combined dataset.
There we achieved 98% accuracy on the validation set.

Figure 5 depicts how the federated loss of 2 clients converged after ten epochs.
With just 32 samples used for training on both devices, the loss of the global
model decreased. In the real world, we can use thousands of clients and then
perform model weight averaging with the help of the FedAveraging algorithm.

0.54 —— Evaluation Loss
0.52
0.50
0.48
0.46
0.44

0.42

Federated Evaluation Loss

0.40

0.38

Federated Epochs

Fig. 5. Federated Loss Convergence

6 Conclusion & Future Scope

SMS Spamming is a problem billions of mobile users face. Spammers bulk spam
a large number of people. Innocent people fall into the trap set by spammers
by attracting them with exciting rewards and lotteries. In our research study,
we have proposed a federated learning based on-device SMS Spam classification
approach. We have used the DistilBERT model to classify our SMS. The vali-
dation accuracy we achieved is 98%. The SMS received on the user’s mobile are
sensitive so they will never leave the device premises. Only, the model will train
on the user’s SMS and its weights will be transferred to the centralized server.
As a part of the future scope, we would like to extend this project to predict
SMS spam in vernacular languages.
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